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The problem is considered of unsymmetric steady flow past a circular cone in a 
uniform supersonic stream of viscous gas at high Reynolds number R. It was 

shown in Cl] that in many cases the solution of the problem of inviscid flow past 

a cone is such that normal derivatives of the density (and temperature) and of the 
velocity components of the gas tangent to the surface become infinite at the sur- 

face of the cone. In these cases, it follows from the condition of matching the 

solution for inviscid flow past the cone (which is regarded as the first term of an 
asymptotic expansion of the solution of the complete problem in powers of E = 
= R-‘/a outside the boundary layer) with the solution of the problem in the bound- 

ary layer that supplementary terms appear in the latter solution, which may give 
a significant correction to the results of the usual boundary-layer theory. It is 
shown (in the case of a laminar boundary layer) that these supplementary terms 
are self-similar; and a strict formulation is given of the problem for their deter- 
mination. 

1, We consider steady flow past a circular cone of semi-vertex angle p in a uniform 
supersonic stream of viscous gas at angle of attack a. In a system of coordinates in 
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Fig. 1 

which s is measured from the vertex 

of the cone along generators, rz is nor- 
mal to the body, and the angle 9, deter- 

mines the meridional plane (see Fig. l), 
the equations of continuity, momentum 

(Navier-Stokes equations) and energy, 
and the equation of state of the gas have 

the form 

(Jp)* + I+),+ (P49 =; *) 

. 

c2 .:p [ML., + uu, + hw (IL, - sin BW + PA = ((A + 2~) u, + (1.2) 
-I- h [h f h (w. + u sin P + u ~0s P)JL + 1~ k, -t u,)l, + 

+ h (p [h (u, - w sin 0) + w,]}* -& ph (2 sin p’[u, - 

--Ir (w, -I- u sin P + u ~0s P)] + 00s P (0, + u,)) 

E-’ (p luw,+ UIU,+ ho (wo+ u sin p+ ucos p)] +hp,) = {p [h (u, - w sin p) + 

+ ~~~,l~sf iP (%I + h (% -wc0spj]],+h[(h+2p)h(w,+usinp+ucos-p)+ 
+ A-(u,+u,)l,+2hp {sin p [h&.--w sin p) f w,] 4 cos P [h(o,-w cos /.I)+ w,]} 

$1.3) 

E-’ (P [uu, + vu,, + hw (~0 --sPw)l.+ PJ = Itr(u, +%)I, + (1.4) 
+ {(A + 2cL) u, + h [u, + h (w, + u sin P + u cOs P)lL + 
+ h (P I% + h (UP - w ~0s P)IL f ph {sin P @, -t- %I -I- 

+ 2 cosp (u,- h(w, +usinP +vcos(~)]~ 

E-~ Ip (u T, -I- UT,, + whT,) - (ups + ~JP+, + ~uhp,)l = 
= 6-l [W’s), -I- W,), + ha Wc.M + @ (1.5) 

(1) = tb (2 [ua2 + u,’ + ha (w, + u sin p + v cOs p)2] + 

+ (u, + u,)’ + Iw, + h (v, - w ccsP)12 + lw,,+ 11 (u, - w sin P)12 + 
+A[u,+~,+h(w,$usinp+ucos/3)]~ 

p=L+ pT, p=p(T), h=W) 

e&.+, R=%, h = (S sin p + n cos p)-’ WQ 

Here u, U, tu are the components of the velocity vector in the direction of increas- 

ing-s, rt, CP respectively, c, is the density, .p the pressure, 2’ the temperature, 6 the 
Prandtl number, p and h the coefficients of viscosity, y the adiabatic index, and Ii’ 
the Reynolds number formed from the characteristic parameters of the flow. Derivatives 

are indicated by subscripts: for example, U, = &L/&Z. In Eqs, (l.l)-(1.6) all lengths 

are referred to I,, velocities to v,,, density to pO, pressure to.p,VOa, temperature to 
T ,, = V02ci? (where c,, is the specific heat at constant pessure). and the coefficients 
of viscosity to*p,.The notation for dimensionless quantities is the same as for dimen- 
sional ones. 
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2, To solve the problem of flow past a body in the case a (( 1 we distinguish the 
boundary layer - a region of thickness 0 (8) immediately adjacent to the surface of 
the body - and the “outer flow” region. In the latter region the solution of the system 

of equations (1.1) - (1.6) is, in the simplest case, sought in the form of an asymptotic 
expansion 

f (s,.n, 99 6) * F, (s, n, cp) 4 aFs (8, n, CF) + . . . (2.1) 
Here, f stands for u, V, W, p, p or T. In the region of the boundary layer, where vis- 
cous forces are of the same order as inertia forces, we introduce the variable N = n&-l, 

and the solution is sought in the form of the asymptotic expansion 

f (s, n, cp9 a) - fr (s, N, 0) + ef2 (s, N, v) + a’* (2.2) 
v - ev, + &?I2 

where f stands for U, W, P, p or T. The equations for the first terms of the expansion 
(2.1) are the Euler equations, and those for the first terms of the expansion (2.2) are 

Prandtl’s boundary-layer equations. The complete solution of the problem is obtained 
by matching the expansions (2.1) and (2.2) in a certain overlap region ~1. 

3. For the case under consideration of a circular cone, the terms Fl (s, n, cp) in 

the expansion (2. l), corresponding to the solution of the problem of inviscid flow past 
the cone, have (for conical flow) the following form near the surface of the cone (n = 

=O) Cl1 

p = p* + n (n/s)‘l + . . . , p = p* + p*w*zc1gp (n/s) + 0 I(W)““) 

Here f* = I* (cp) = f Oh T)/ ,,.=o (the dots indicate terms of higher order of 
smallness in -n/s than those shown), A and D are certain functions of (r, and the con- 
stant B is determined by the equation 

(3.2) 

and in most cases B < 1. Henceforth we consider the case ~9 < 1. 

4. The expansions (2.1) and (2.2) are matched in the “overlap region” by writing 

(2.1) for small n,and then replacing n by II = NE; the result should be expression 
(2.2) written for large N, Setting ?I = NE in Eq. (3.1) gives 

P = p’ + EDA (Nis)D + . . . , J’=P*+O(E) 
u = u* + el’D (A’#’ + . . . , v = 0 (E) (4.1) 

-t 
w=W*+@ G--f& A-u*D ( j 

(N/s)~+,.. 

The first terms in (4,1X written explicitly, yield boundary conditions at large ,N for 
the terms ,fl (s, IV, cp) in the expansions (2,2), which determine the usual solution in 
the boundary layer. (The matching condition for v is satisfied automatically). The 
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secondary terms in (4.1). of order &n, show that in the case B < 1 the expansion 

(2.2) must be replaced by the expansion 

f (8, n, cp, a) - fr (s, N, $1 + @Is (a, N, cp) + . . . (4.2) 

It can be shown that the terms 1, (s, N, (6> satisfy linear equations which are obtained 

by perturbing the usual Prandtl boundary-layer equations. 
For r;< I the quantity en will not be small (for example, for M, = 7, P - 3W’, 

a =.5”, B z 0.075, and for R = IO@, ~~ z 0.6) ; therefore terms of O(eB) in (4.2) may 
give a significant correction to the results of conventional boundary-layer theory, The 
interaction between the inviscid flow and the boundary layer described above is similar 
to the vertical interaction at hypersonic speeds, but there the interaction is caused by 

strong curvature of the bow shock wave, whereas here no simple physical cause is evident 
for the origin of the interaction. 

6. Considering what has been said above, and also the fact that the solution of the 
usual boundary-layer problem for the circular cone is self-similar p], we will seek the 

solution of Eqs. (1.1) - (1.6) in the boundary-layer region (outside some neighborhood 
of the vertex of the cone) in the form 

Substituting the expansions (5.1) into the system of equations (1.1) - (1.6) and equa- 

ting terms of the same order in e we obtain the following systems of equations for the 

functions with subscripts 1 and 2: 

Pl[wldvlvz6ul) + * (w+ wiO)]+ * = (tLlwlt;)c 

Pl[ult(v,O-'/rtul) + -+m- wlq = (Wlik 

P1[t,r (v,o-1/,6~l) c +I.]- Q-+lrp = 3-'(p,t,<)c + cLl(4 + 7Q2) 

-1 
Pl = + Pdl~ CL1 = P(b)9 PI; = 0 
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The boundary conditions for the systems of equations (5.2) and (5.3) follow from the 

conditions for flow past the cone and Eqs. (4.1). and have the form 

f IO, ut = UT = wt = 0, t, = T, (‘or t1r;== 0) (5.4) 

(where T, is the temperature of the cone surface) 

f-+00, 4--*u* 0% w1+w+ (cp), Pl+P* w 
, Il+.mT9 
E 

Y 
p1*(0) y- 1 ’ ul” 

f=O, u,“=V,“=W,‘=O, tao=O (or &‘=O) (5.5) 

f-+$-co, G~D(cpKB, ~1”--(qW 

wa” 

6. The system of equations (5.2) with boundary conditions (5.4) determines the 
known solution of Prandtl’s equations for the cone. Numerical integration of a system 
of equations equivalent to the system (5.2) was carried out in [3]. We note that the sys- 
tern of equations (5.2) was considered as evolutionary in p], with the angle ‘p playing 
the role of time. The flow variables are found first in the plane cp = rc, and then for 
0 < cp < n. The system of equations (5.3) with boundary conditions (5.5) can also 
be considered as evolutionary, where for cp = rt 

U~~~w~“~v,o~p,o~ft,oeO, u*,+o = wp#O = VlO” - pm0 = tlP” = 0 
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The onset of auto-oscillations at transition of the Reynolds number (or any other 
parameter defining the steady motion of a viscous incompressible fluid) through 

its critical value is investigated. 
Landau in Cl] (see, also, @, 31) considered the onset of the periodic auto- 

oscillation mode to be the first stage of transition from a laminar to a turbulent 

flow of a fluid. His method, developed also by Meksyn.Stuart and Watson (see 
[4-7]), implies the knowledge of the eigenvectors of the linearized (with respect 

to the basic laminar mode at a given Reynolds number) Navier-Stokes operator 

to which (according to the linear theory) correspond increasing perturbations. A 
system of ordinary nonlinear differential equations is derived for the determina- 

tion of the Fourier coefficients of the velocity field. The calculation of the 

right-hand sides of equations of this system is, however, somewhat involved. 

Owing to this, this method had not, so far, provided final results in specific cases, 

such as, for example, the Poiseuille flow in a channel. The Landau method is 
clearly more suitable for investigating the onset of a periodic mode rather than 

for the calculation of a stabilized one. 
Here the onset of auto-oscillations is analyzed by the Liapunov-Schmidt me- 

thod described in [8, 91. The branching out of periodic solutions of systems of 
ordinary differential equations is considered in [ 101, where references to earlier 

works are cited. The generation of a cycle is considered in [lo, 111 for a system 
of ordinary differential equations, while [12-541 deal with the special case of 

Galerkin equations approximating the Navier-Stokes system. Certain statements 

related to the complete Navier-Stokes equations are also formulated in [13, 14s 
A comprehensive statement of the problem and basic definitions are given in 

Sect. 1; an a priori estimate of possible auto-oscillation modes is presented 

(Lemma 1.2), and it is shown that only the critical value of a parameter can be 
a point of branching out of the system (Lemma 1.3). 

This is followed by the analysis of supplementary conditions for the actual 


